'LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the - broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
- Reports to business, industry, the
- academic community, and federal

state and local governments.
‘ Although a small portion of this
report is not reproducible, it is
being made available to expedite
‘the availability of information on the
- research discussed herein.

1

LA-UR -37-2806 T '

oA

Los Alamos National Laborslory 18 Gpersisd by 1he Univeraity of Celiformis for the United States Depanment of Energy unger contrart W-7405.€NG-36

LA-UR--87-2806
DE87 014765

TITLE THE PERFORMANCE OF MINISUPERCOMPUTERS:
ALLIANT, CONVEX, AND SCS

AUTHOR(S) Harvey J. Wasserman
Margaret L. Simmons
0laf M. Lubeck

SUBMITTED TO. Vector and Parallel Processing in Computational Science,
Liverpool, England, August 25-28, 1987
Parallel Processing

DISCLAIMER

This report was propared as an account of work sponsored by an agency of the United States
Govarnment. Neither the Unitod States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or sssumes any legal lisbility or responsi-
hility for the accuracy, completeness, or usefulness of aiy information, spparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence hereir (o any specific commercial product, process, or service by trade name, trademark,
manuflacturer, or otherwise does not nocessarily constitute or imply its endorsement, recom-
mendation, or Tavcring by the United States Ciovernment or any agency thereol, The views
and opinions of suthors expressed herein do not necessarily state or reflect thosc of the
United Stales Cjovernment or any agency thereof.

By accepiance of this srhicie the pub'she! recognizes that the U & Governmani relsns 8 nonenciusive royslly-tree icense 10 publish ot reproduce
the published form of 1his coninbution ot 10 allow others to do so, far US Government purposes

The Los Alamos Nationa! Laboraiory requests (hat the pubhisher entily this srucie as work performed under the auspicel ol the U S Deparimeni ot Ene gy

MASTER
Los Alamos iimatemases

_ . INNTRIHETINN Ok THIS O0rOAMUR T 10 e ey oo

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

The Performance of Minisupercomputers:
Alliant, Convex, and SCS

Harvey J. Wasserman
Margaret L. Simmons
Olaf M. Lubeck

Compuling and Comimunications Division
Los Alamos National Laboratory
Los Alamos, NM 87545
US.A.

Abstract. A comparison of the architechures and performance an a set
of standard Fortran benchmark codes is made of the Alliant FX, Convex C-1,
and SCS-40 minisupercomputers.

1. Introduction

Many defiritions of \he term "supercomputer” have been given, most of which consider the relative per-
formance and high cost of manufacturing such machines, as well as the unique way in which these
machines are programmed and the type of applications on which they are used [6,9,16,21]. Supercom-
puicrs can also be described as machines that combine ccrtain advanced architectural features with
state-of-the-an electronic componentry. For example, the architectural features assoclated with such
supercomputers as the CRAY X-MP, NEC $X/2, IBM/3090, and the CRAY-2 are (1) various levels of
processor parallelis=. including multiple CPUs (of which the SX/2 is an exception), veclorization,
chaining, and multipie, pipelined functional units; (2) varlous levels of men. .~ parallelism, including
multipie-banked main memory, local memory, cache, and vector registers. The performance of a super-
computer is as much dependent on the ability of the compiler 1o find paraliclism in an algorithm as it is
on the hardware speed.

Recenuly several computers have appeared whose architectures feature many, if not all, of the charac-
teristics of supercomputers, but whose clectronic technology uscs less expensive and more readily avail-
able components [8,10,15). Such machines have been labeled "minisupercomputers.” Currently, this
class ol conputers includes those manufaciured by Convex, Alliant, and Scientific Computer Systems
(SCS).

The strategy of these minisupercomputer vendors is to produce a machine that may not provide as much
absolule performance as the high-cnd supercomputers but exhibits a comparable or betier price-
perforrnance rutio. While it is not the goal of this paper to comment on the specific price effectiveness
of any particular inachine, we belicve that a proper cvaluaion of the minisupercomputers should
include price Jata,

This paper presents a detailed performance comparison of the Convex C-1, Alliant FX/8, and SCS-40
minisupercomputers. While the Convex C-1 s functionally similar o the CRAY-1 rupercomputer, the
SCS-40 actually emulates a CRAY X-MP/2, running the same instruction set and providing CRAY X-

MP software. The Alliant scries of machines are mulliprocessors, containing up to eight processors
(called computational elements, ar CEs) thal can run separale processes or cooperale on a single appli-
cation. The Alliant system also includes a compiler that automatically attempts to partition a code for
concurrent execution on several processors. In the first sections of this paper, the single processor per-
formance of the FX/8 i3 compared with that of the C-1 and the SCS-40, as well as with a Digital
Equipment Corporation (DEC) VAX B8600. In a later section, the parallel processing performance of
the F¥/8 is described.

All measurements were carried out using the standard Los Alamos National Laboratory (LANL) bench-
mark suite. A recent National Research Council report has characterized supercomputer benchmarks in
terms of a useful hiriarchy [14). According to this hierarchy, the codes in the LANL set consist of
tests at the levels of hardware demonstration programs, basic routines, and stripped-down applications.
The benchmark set has been run on u broad range of both scalar and vector machines [4,7,12,13,18-20].

2. Architectural Considerations

Detailed descriptions of the architectures of the Alliant FX [2,3], Convex C-1 [18], and SCS-40 {17,20]
have been published clsewhere. Table 1 presents a comparison of some functional unit times in the
three minisupercomputers, while Table IT shows a comparison of some memory features. In both of
these tables dawa are also presented for 8 CRAY X-MP/48 with a 9.5-ns clock period (CP) for com-
parison. The three machines discussed in this paper, while all classified as minisupercomputers, are
architecturally quite different. For example, Alliant chose to build its processor with moderate vector
specd but in a multiprocessor environment, while Corvex and SCS designed more raw vector speed into
their single proccssor machines. Additonally, CPU clock periods range from 45 to 170 ns, and max-
imum vector register Jengths range from 32 w0 128 64-bit words.

In comparing the minisupercomputers with today’s supercompuitrs we see there are two important
dilferences between these classes of machii. '8, even though precise distinction between the two classes
theiaselves is difficult. (As Lubeck [11] has pointed out, there is a seven-fold variation in CPU clock
Ltimes within the supercomputer class but only a factor of 4 between the supercompuier and minisuper-
computer classes.) Obviously, most differences between the two classes arise from the goal of construct-
ing minisupcrcomputers at lower cosL The first difference is the mcthod of inierconnecting the proces
sor and micmory componcnts: supercomputers use direct connections whercas minisupercomputers use
busscs, The busses in the SC540 and the Alliant FX/8 both h:i:¢ cycle times equal o one-half thelr
CPU clock; the Coavex C-1 bus, however, runy al twice the CPU cycle time. The second difference is
that the Convex C-1 and Alllant FX machines use data cache memory o provide acceptable access
times, whereas most supercomputers do not provide caclies (the 1BM 3090 and NEC SX/2 are excep-
tions). The minisupercomputers all have ncarly the same ratio of memory cycle time to CPU cycle
time as the CRAY X-MP/48. Most supcrcomputer memaoxics are more highly interizaved than the
minisupcrcomputers.

3. Single Processor Benchmark Results

Previous publications have described the important characteristcs of the Los Alamos benchmark set
[13,20). All benchmarks were run in 64-bit precision and cach code was run in 4 dedicated environ-
ment. In Section 3 all results were from codos requiring only those changss needed to ge. the codes
running; no tuning was done. Most of the Alliant data wcre collected in Mazch 1987, The Convex
data were mecasured in May 1987, while the benchmark of the SCS-40 took place in December 1986,

3.1 Scalar Performance

Three codes in the benchmark set are non-vectorizable and are thus useful in determining relative scalar
performance of the machines. Thesc data are presented in Table 1II. The order of scalar performance
on each of these codes, from fastest o slowest, is SCS-40, Alliant FX, Convex C-1. The SCS-40 is
nearly twice as fast as the Alliant Interestingly, the Alliant is 1.5 to 2 times as fast as the Convex C-1,
despite the faster CPU clock on the Convex.

3.2 Basic Vecior Operations

We ran two programs, called VECOPS and VECSKIP, that measure the times Lo execute one million
vector operations as a “‘unction of vector length. VECOPS makes these measurements using a conscu-
tive memory access scheme, while VECSKIP examines performance with various strided memory refer-
ences. Results from these codes are listed in Tables IV, V, and VI. The performance advantage of the
SCS-40 over the cntire range of vector lengths is significant. The faster clock period and higher
memory bandwidth of the SCS-40 account for the dramatic differences. Note that these are single pro-
cessor results for the Alliant. Abu-Sufah and Malony [1] have published a detailed analysis of Alliant
FX/8 behavior on our VECOPS program. They measured considerably larger maximum vector rates
(than shown in Table V) when the code was executed in vector-concurrent mode, in which individual
iterations of a loop are distributed across all eight CEs. However, the FX/8 veclor-concurrent rates are
sull well below the rates we obtained on the SCS40. The reason for this bchavior on the FX/B is the
increased overhead associated with distributing the loop across eight processors and also the decreased
memory throughput per CE.

Vector spced as a function of length on most vector processors increascs rapidly and eventually reaches
an asympiotic rate. The Alliart FX processor reaches its asympiotic rate around vector length 25. For
example, in Table V, Alliant vector rates increase by a factor of 2 between lengths 10 and 25, but only
incrcase another 10% from 25 w0 1000. As we will sce in a later section, this characteristic of the Alli-
ant processor will be important in analyzing paraliel processing performance on the FX series.

The time vs. length data may be least-squares fit to a linear model [5] consisting of a startup time, T,
and an clement time, Tez

TeT,+nT, .

where n is the vector length. However, this model assumes that vectors are loaded directly from main
memory into the vector regisiers. Since this is not true for the Alliant, the derived data are less reli-
able. The Convex C-1 bypasses cachc on vectlor loads, and we find, for the vector plus scalar opera-
tion, To = 2800 ns, T, = 2 CP and, for the vector times vector operation, T = 2880 ne, Te = 1 CP.
The Convex, like the éRAY-l, has only one port 1o memory, capable of onc load or stors per CP. For
the SCS-40, we observe startups of 1463 ns and 1502 ns for these two operations and clement times of
1 CP for both. For the chained operation a(i) = b(i) + s ® c(i), the SCS 40 is capable of producing two
results per clock (and doing two loads/stores per clock), so we observe an element time of 1/2 CP,

It is also instructive to consider vector performence when memory access s not contiguous, shown as
the sccond and third entries in Tables IV-VI. The Convex C-1 does not suffer any performance degra-
dation with stride 23 out it docs with suride 8. Although the C-1 bypasses cache in this inswnce, is
memory Interlcaving Is such that only two banks arc repeatedly referenced for the suide 8 loop, result-
ing in significantly lower rutes. For the SCS-40, mtes calculated from the least-squares fit show thal the
clcment time is the samo for strided as it is for non-strided access. The atartup time on the SCS-40
increases, which decrcases the observed rates by about 30% at vector length 10 and 8 % at vector
length 1000.

Operatior.s involving irregular memory access schemes, or gather/scatters, constitute the last two opera-
tions in Tables IV through VI. The Convex C-1 runs these loops at up to almost twice the rate of
either the SCS40 or the Alliant FX. Although both the Alliant and the Convex vectorize thesc
gather/scatters, both are loading these vectors through cache, and their observed rates are abou! half

what these machines provide on contiguous references. Indirect vector references do not vectorize on
the SCS-40.

3.3 Specific Single Processor Benchmark Results

Timing data for the benchmarks are listed in Table VII. For comparison purposes, times measured on a
DEC VAX 8600 and one processor of 8 CRAY X-MP/48 are also given. The X-MP resulls were meas-
ured on a 9.5-ns machine using the CFT77 compiler, while the VAX resulls were obtainad under the
VMS operating sysiem using the FORTRAN Version 4.4 compiler. In the specific comments about
each code that follow, the results from the Alliant FX/8 are from a single processor.

1. INTMC is an integer Monte Carlo code with virtally no floating point calculations. The Con-
vex C-1 is faster than both the Alliant FX and the SCS40. The SCS-40 shares the handicap of the
CRAY X-MP/24 on this code (previous benchmarks have shown the CRAY machines’ weakness on
integer arithmetic [7]; the CDC 7600 is two times faster than a CRAY-1) because it does 64-bit intcger
calculations.

2. FFT, a 64-point transform that is nearly 100% veclorized, runs 4 1o S times faster on the SCS40
than it does on the Alliant FX and Convex C-1. This is consistent with the VECOPS data presented
above. The algorithin used in FFT is not tuned to any particular machine; vendor-supplied library FFT
routines may' run much faster.

3. PUSH, the computationally iniensive portion of a particle-incell hydrodynamics code, contains a
few loops with IF statements and makes use of the gather operation. On this code the SCS-40 runs
twice as fast as the Convex, which in turn runs twice as fast as the Alliant. This is despite the lack of
hardware scatier/gather on the SCS-40.

4, MATRIX performs basic matrix operzuons on matrices of order 100, Herce, the Alliant and Con-
vex times are 3 10 4 umes slower than the SCS-40.

S. GAMTERB is a scalar Monte Carlo particle transport code on which the SCS-40 runs twice as fast
as the Alliant FX and three times as fast as the Convex C-1.

6. LSS solves a system of lincar cquations using Gaussian climination and is almost entirely vector-
ized. On this code the C-1 runs almost twice as fast as the FX, but the SCS-40 is twice as fast as the
C-1. These times are also consistent with the VECOPS data, which showed the Convex to be twice as
fast ns the Alliant at vector length 100

7. HYDRO is 5 Lagrangian hydrodynamics coife representative of codes that are a significaat part
of the Laboratory's workload. The Convex time is sbou 15% faster than that of the SCS-40, while the
Alliant is nbout twice as slow. HYDRO contains many loops with IF wsts that the Convex compiler
was able o vectonize but the SCS-40 compiler was not,

4. Parallel Processing on the Alliant FX/8

As mentioned earlier, Alliant provides the first vendor Fortran compiler that attempts automatic parallel-
ization of Fortran programs. The compiler’s strategy is to veclorize the innermost loop of a set of
nested loops and parallelize the next outer loop (partition it armong processors), a mode called “con-
current outer-vector inner” (COVI). When dependencies prevent outer loop concurrency, the inner loop
may become vector concurrent. The compiler dependency analysis does not include interprocedural
analysis; therefore, function calls in a loop prohibit vectorization and concurrency. Compiler directives
can force or prevent concurrency of veclorization in any loop. However, nondelcrministic errors are
possible with the incorrect use of directives.

Our benchmark of Alliant multiprocessor performance occurred in two stages. The first involved exe-
cuting codes with no changes. In the second stage we restructured two codes and used compiler direc-
tives to force concumency. The results of both stages are shown in Table VIII, along with the
efficiency for eight processors, defined as the ratio of the speedup to 8.

Not surprising to us, there were few places where the original codes could be compiled in COVI mode.
This is because most outer loops contain function calls. Thus, in most of the cases where paralleliza-
tion occurred, the codes were compiled in vector-concurrent mode. The overnll performance of vector-
concurrent loops represents a tradeoff. In vector-concurrent mode the vector length that each CE exe-
cutes is 1/P times the original vector length, where P is the number of CEs, As we saw in Section 3.2,
vector specd increases with increasing vector length up 10 about length 25, beyond which it is flat. Par-
titioning a vector among processors increases multiprocessor utilization at the expense of reducing sin-
gle processor performance at vector lengths less than 25. Our timing dat» from HYDRO1 are an exam-
ple of this tradeoff (in Table VIII HYDROI1 represents HYDRO with no changes). HYDRO is highly
vectorized with loops of length 100. The speedup functions for two and four processors are nearly
lincar because the vecior lengths are greater than or equal to 25. However, beyond four processors, the
performance curve begins to flatten because of the shorter vectors.

The efficiencies achieved by automatic compiler parallelization (all codes in Table VIII other the:
HYDRO?) are in the range 14 to 75%. We should remember that these multiprocessor gains come with
no extra user effort. Therefore, when comparing the Alliant with the $CS-40 and Convex C-1, it is
most fair o use the eight-processor Alliant data. Automatic parallelization by the Alliant compiler has
increased the overall performance of the FX/8 so that it is now faster than the Convex C-1 on seven of
cight codes.

Significant gains have been made against the SCS-40 also. The strong single processor performance of
the SCS40 is surpassed by the multiprocessor Alliant on two codes ((;TYDRO and INTMC) and equaled
on two others (LSS and MATRIX). The SCS-40 is faster on the iemaining five codes, by as little as
40% (PUSH and MONTE) and by as much as a factor of 2 (FFT and EOS). On the codes that
represent stripped-down applications in the benchmark hicrarchy (PUSH, MONTE, GAMTEB, and
HYDRO), the SCS-40 is faster on all but one (HYDRO), which Is 60% faster or: the Alliant. Stripped-
down applications are closer to the full codes in the LANL workload and we weight their performance
more heaviiy.

The inability of the compiler to do interprocedural dependency analysis was the major factor limiting
multiprocessing efficiency of the FX/B. Code restructuring is nceded to take full advantage of the Alll-
ant mode! of parallelism, and we atiempted thiy next.

The first code we trie 10 restructure for concurrency was SCALCAM, a Monte Carlo photon transport
code with no vectorization. Theorctically, a high degree of concuirency Is possible because each pho-
ton Is transporied Independcntly and there wre 200,000 souice photons. SCALGAM uses a binary tree

of pseudo-random numbers to ensure determinacy. Analysis of the code showed that minor restructur-
ing and a few compiler directives would allow parallclization of the particle loop. In attempting this,
however, we encountered non-deterministic errors with more than 5000 source particles. This type of

bug occurs all 100 often in user-defined concurrent programs on any multiprocessor, and we are still try-
ing to debug SCALGAM.

The second code we restructured was HYDRO, a logically rectangular hydrodynamics algorithm with
explicit time differencing. This code is a series of nested loops (of depth 2) corresponding to the k and
1 lines of the mesh. The Alliant compiler first attempted 0 run the inner loop (on k) in vector-
concurrent mode. From previous experience with HYDRO, we know that each outer loop (on [) can be
executed concurrently, but a function call in the outer loop prevented the compiler from running this
loop in parallel. A simple compiler directive should have been all that was needed to run the outer
loop concurrently. However, using the directive would have meant that a vector passed (by address) to
the function and, modified by it, would become global because the same address would be passed to all
processors. A race condition on this argument would thus occur. The solution to this storage model
problem was to make the vector local 10 each outer loop instantiation by rewriting the loop body as a
new subroutine that got a scparate stack at execution time. The amount of resiructuring was large
enough that we attempted it for only one loop. The time for HYDRO?2 in Table VIII shows the success

of this approach when compared with HYDROI1. Better zesults could have been obtained by applying
this solution throughout the code.

§. Conclusions

We have only one code with which we can compare the scalar performance of the DEC VAX 8600 to
the minisupercomputers (MONTE). On this code the relative performance of the Alliant, Convex, and
SCS to the VAX ranges from 1 to 1.5. However, on our vectorized benchmarks, the minisupercomput-
ers as a group ran 2 o 20 times faster than the VAX. On most of the codes, the SCS-40 showed the
biggest improvement over the YAX.

The SCS-40 and Alliant FX/8 both out-perform the Convex C-1, except on HYDRO, where the C-1,
because its compiler is better at vectorization, performs about 15% better than the SCS-40. The SCS-
40 is 1.5 1o 5 times as fast as a single processor of the Alliant FX. However, in comparing the Alliant
FX with the SCS40 we note, again, that it is most appropriatc to compare the unrestructured eight-
processor Alliant results with the SCS-40 because both represent the maximum performance fiom each
machine with no user intervention. Performance results for the SCS-40 and FX/8 arc mixed. Placing
more emphasis on our stripped-down application benchmarks, the SCS-40 maintains a performance
cdge. In general, we believe the SCS40 has an advantage on our codes because of its faster CPU
clock and higher memory bandwidth, ¢ven though we believe its compiler technology is inferior o that
of Alliant and Convex,

Our codes showed as much as u spcedup of four from a parallelization in vector-concurrent mode. On
the other hand, to extract significantly more parallelism from our codes, interprocedural analysis is
necessary, This is a difficult problem, and to the best ot our knowledge, no computer vendor currently
offers such a facility in a production level compiler,

Finally, we emphasize that the benchmark cudes used in this study are intended to represent only the
Los Alainos workload, and caution should be used in comparing the resulis with those based on other
workloads.

6. Acknowledgements

This work was performed under the auspices of the U.S Department of Energy. We thank Gayle John-
son of Alliant, Ron Gray of Convex, and Chuck Niggly of SCS for their assistance during the bench-
marks. We thank Lawrence Pratt of LANL Group CLS-2 for allowing us to use the Convex C-1.

7. Refzrences

1. W. Abu-Sufsh and A. D. Malony, Vector Processing on the Alliant FX/8 Multiprocessor, Proc.
IEEE Inil. Conf. Parallel Processing (1986) 559-570.

2. W. Abu-Sufah and A. D. Malong, Experiences with the Alliant FX/8 Mini-Sunercomputer, CSRD
Report #570, Center for Supercomputing Research and Development, University of lllinois, 1986.

k]

3. Alliant FX/Series Product Summary, Alliant Computer Systems Corporation, Littleton, Mas-
sachusetts (1986).

4. R. G. Brickner, H. J. Wasserman, A. H. Hayes, and J. W. Moore, Benchmarking the IBM 3090 with
Vector Facility, Los Aiamos National Laboratory Unclassified Release LAUR-86-3300 (1986).

S. L Y. Buclier and J. W. Moore, Comparative Performance Evaluation of Two Supercomputers: CDC
Cyber-205 and CRAY-1, Los Alamos National Laboratory Unclassified Release LAUR-81-1777 (1981).

6. M. D. Ercegovac and T. Lang, General Approaches for Achieving High Speed Computations, in: S.
Fembach, ed., Supercomputers Class VI Systems, Hardware and Software (North Holland, Amsterdam,
1986) 1-28.

7. 1. H. Griffin and M. L. Simmons, Los Alamos National Laboratory Computer Benchmarking 1986,
Los Alamos National Laboratory Unclassified Report LA-10151-MS$ (1984).

8. S. Lackey, J. Veres, and M. Ziegler, Supercomputer Expands Parallel Processing Options, Computer
Design (1985) 76-81.

9. N. Lincoln, Technology and Design Tradcoffs in the Creation of a Modern Supercomputer, in: S.
Fernbach, ed., Supercomputers Class VI Systems, Hardware and Software (North Holland, Amsterdam,
1986) 83-111.

10. J. R. Lincback, CMOS Gates Key 0 ‘Affordable’ Supercomputer, Electronics Weck (1984), 17-20.

11. O. Lubeck, Supercomputer Benchmarks: Theory, Practice, and Results, in: M. Yovits, ed.,
Advances in Computers (North Holland, Amsterdam), to appear 1988.

12. O. Lubeck, J. Moore, and R. Mendez, A Benchmark Comparison of Three Supercomputers: Fujitsu
VP-200, Hitachi $810/20, and CRAY X-MP/2, IEEE Compuser 18 (1985) 10-29.

13. O. Lubeck, J. Moore, und R. Mendez, The Performance of the NEC SX/2 and CRAY X-MP Super-
computers, Los Alamos National Laboratory Unclassified Release LAUR-87-227 (1987).

14. An Agenda for Improved Evaluation of Supercomputer Performance, National Research Couvncil
(National Academy Press, Washington D.C., 1986).

15. S. Ohr, Computer Scores with Cray Compatibility, Electronic Design (1985) 61-62.
16. J. P. Riganati and P. B. Schneck, Supercomputing, Computer 17 (1984) 97-113.

17. SCS40 Architecture Reference Manual, Scientific Computer Systems Corporation, SCS Document
Number 950000001-001A, San Diego, Califomia (1986).

18. M. L. Simmons and O. Lubeck, Benchmark of the Convex C-1 Mini Supercomputer, Los Alamos
National Laboratory Unclassified Release LAUR-86-2890 (1986).

19. M. L. Simmons and H. J. Wasserman, Los Alamos National Laboratory Computer Benchmarking
1986, Los Alamos National Laboratory Report LA-10898-MS (1987).

20. H.). Wasserman, M. L. Simmons, and A. H. Hayes, A Benchmark of the SCS-10 Computer: A
Mini Supercomputer Compatible with the CRAY X-MP/24, Los Alamos National Laboratory
Unclassified Release LAUR-87-659 (1987).

21. J. Worlton, Supercomputers: Past, Present and Future, presented at Second SIAM Conference on
Paralle! Processing for Scientific Computing, Norfolk, Virginia, November, 1984,

Table 1. Tiepres=ntative Functional Unit Operation Times

Floating Point Floating Point Floating Point Integer
Add Multiply Divide Add
Alliant FX/8 510ns (3CP) 510ns(3CP) 2720ns (16 CP) 680 ns (4 CP)
Convex C-1 300ns3CP) 400ns(4CP) 3300ns(33CP) 100ns(1CP)
SCS40 135ns 3CP) 135ns(3CP) 270 ns (6 CP) 90 ns (2 CP)
CRAY X-MP/48 S.ns(6CP) 665ns(7CP) 133ns(14CP) 285ns (3CP)
Table II. Important Memory Characleristics
Cycle Maximum Vector Vector Access Bus Nu.mber:f
Time Transfer Rate Time Throughput Banks
Alliant FX/8 2 word/CP 188 Mbyte's 8
Convex C-1 4 CP 4 word/CP 3ICP/BCP 80 Mbyue/s 16
400 ns 300 ns/300 ns
SCS40 5CpP 4 word/CP 5CP 1 Gbyte/s 16
225 ns 225 ns
CRAY X-MP/48 4 CP 3 word/CP 17 CP - 61
38 ns 161.5 ns

»
Vector in cache/vector not in cache.

Table III. Execution Times (in Seconds) for Scalar Codes

Program Alliant FX SCS40 Convex -1
Name

GAMTEB 41.0 210 61.0
EOS 157. 778 410.
MONTE 19.0 13.6 21.0

Table IV. Rates (MFLOPS) on the Convex C-1 fo. Selected

Vector Operations as a Function of Vector Length

Operaiion 10 25 50 100 200 1000
a(i) =bQ{) +s 1.5 25 30 35 137 40
a(i) = b(d) + s (i=1,n,23) 1.1 21 29 136 138 4.0
a(i) = b() + s (i=1,n.8) 07 10 11 12 12 12
a(i) = b() * c(i) 1.1 18 22 25 26 28
a(i) = b(i) + s * ¢(i) 24 35 44 50 52 55
ai) =b) *c@) +d() ™el 23 32 40 45 49 49
a(i) = b{@) +s 09 15 20 21 20 20
a(j() = bli) * c(i) 08 11 14 16 16 1.7
Table V. Rates (MFLOPS) on the Alliant FX for Selected
Vector Operations as a Function of Vector Length
Operation 10 25 50 100 200 1000
ai) = b(i) + s 12 19 20 21 22 23
a(i) = b(i) + s (i=1,n,23) 07 12 16 18 20 2.0
a(i) = b(i) + 5 (i=1,n,8) 07 13 16 18 20 2.0
ai) = b(@) * c(i) 10 14 15 15 16 1.6
a@) = b@) + s * c(i) 16 25 27 28 29 3.1
a(i) = b{) *c(i) +d(i) *el@ 15 20 20 21 2 22
a(i) = b(@) + s 07 10 11 1.1 11 1.2
a(j(i)) = bii) * cii) 06 09 10 11 11 12
Table VI. Rates (MFLOPS) on the SCS40 for Selected
Vector Operations as a Function of Vector Length
Operation 10 25 50 100 200 1000
a(i) = b(i) +s 36 90 153 173 178 202
a(i) = b(i) + 8 (i=1,n,23) 26 64 109 138 153 186
a(i) = i) + s (i=1,n,8) - - - - - -
a(i) = b(i) * c(i) 35 87 138 155 160 182
a(i) = b(i) + 8 * c(i) 66 164 275 307 319 364
a(i) =bG) *c(i) +d(i) *e(i) 84 178 246 258 262 273
a(i) = b(j(i)) + s 09 10 1.0 1.0 09 1.0
a(j(i)) = b(i) * c(i) 1.0 1.1 1.2 1.2 1.2 12

Table VII. Benchmark Execution Times (in Seconds) for the
Alliant FX, SCS 40, CONVEX C-1, DEC VAX 8600, and CRAY X- MP/48

Program Alliant FX SCS540 ConvexC-1 DEC VAX 8600 CRAY X-MP/48
Name

FFT 82.0 210 97.0 2222 4.2
MATRIX 953.1 1670 529.0 . 432
LSS 120.0 280 65.0 4622 74
GAMTEB 410 210 61.0 - 59
INTMC 3220 2190 83.0 186.9 133
PUSH 190.0 39.0 87.3 3320 48
MONTE 19.0 13.6 21.0 202 2.0
HYDRO M0 3478 298.2 - v 17.2
EOS 157. 718 a1, 155.2 215

* X-MP and Alliant FX times are from a single processor.

** Thirty-two-bit precision for this code.

Table VIII. Execution Times (in seconds) on 1 - 8 Processors of the Alliant FX/8

Program One Two Four Eight Efficiency for
Name Processor Processor Processor Processcrr Eight Processors
FFT 820 59.0 48.0 400 25
MATRIX 953.1 478.6 263.7 156.5 75

LSS 120, 64. 38. 26, 58
GAMIEB 41.0 38.0 36.0 36.0 14
INTMC 3220 215.0 160.0 153.0 26
PUSH 190 113 74 56 42
MONTE 19 19 19 19 .
HYDRO.I 77 452 290 208 46
HYDRO.2 771 415 245 163 59

EOS 157 155 154 154 -

